

2

Chapter 4- Building IoT applications

Introduction to Arduino Board and IDE

ARDUINO एक open source हार्डवेयर और सॉफ्टवेयर कम्पनी और कमु्यननटी है, जो रे्वलपमेंट

बोर्ड बनाती है. रे्वलपमेंट बोर्ड यानन एक embedded system नजसमे microcontroller या

microprocessor होता है. साथ ही साथ उसमे पॉवर सप्लाई रेगुलेटसड, मेमोरी, communication

ports, etc. होता है.

Microcontroller ATmega328P

Operating Voltage 5V

Input Voltage

(recommended)

7-12V

Input Voltage (limit) 6-20V

Digital I/O Pins 14 (of which 6 provide PWM output)

PWM Digital I/O Pins 6

Analog Input Pins 6

DC Current per I/O Pin 20 Ma

DC Current for 3.3V Pin 50 Ma

3

Flash Memory 32 KB (ATmega328P) of which 0.5 KB used by boot

loader

SRAM 2 KB (ATmega328P)

EEPROM 1 KB (ATmega328P)

Clock Speed 16 MHz

LED_BUILTIN 13

4

Different Types of Arduino Boards

 Arduino Uno (R3)
 Arduino Nano
 Arduino Micro
 Arduino Due
 LilyPad Arduino Board
 Arduino Bluetooth
 Arduino Diecimila
 RedBoard Arduino Board
 Arduino Mega (R3) Board
 Arduino Leonardo Board
 Arduino Robot
 Arduino Esplora
 Arduino Pro Mic
 Arduino Ethernet
 Arduino Zero
 Fastest Arduino Board

Introduction to Arduino IDE

The Arduino IDE is an open-source software, which is used to write and upload code

to the Arduino boards. The IDE application is suitable for different operating systems

such as Windows, Mac OS X, and Linux. It supports the programming languages C and

C++. Here, IDE stands for Integrated Development Environment.

5

Simple Program LED Blinking

6

Simple Traffic Light Control Program

 Code:
int red = 2 ;
int yellow = 3 ;
int green = 4 ;
void setup(){

pinMode(red, OUTPUT);
pinMode(yellow, OUTPUT);
pinMode(green, OUTPUT);

}
void loop(){

digitalWrite(red, 1);
delay(4000);
digitalWrite(yellow, 1);
delay(1000);
digitalWrite(red, 0);
digitalWrite(yellow, 0);
digitalWrite(green, 1);
delay(5000);
digitalWrite(green, 0);

}

7

Embedded ‘C’ Language

Embedded C is most popular programming language in software field for developing

electronic gadgets. Each processor used in electronic system is associated with

embedded software. Embedded C programming plays a key role in performing specific

function by the processor.

The language in which Arduino is programmed is a subset of C and it includes only

those features of standard C that are supported by the Arduino IDE.

Differences between C and Embedded C:

Parameters C Embedded C

GENERAL

 C is a general purpose

programming language,

which can be used to

design any type of

desktop based

applications.

 It is a type of high level

language.

 Embedded C is simply an

extension C language and it

is used to develop micro-

controller based

applications.

 It is nothing but an

extension of C.

DEPENDENCY

 C language is hardware

independent language.

 C compilers are OS

dependent.

 Embedded C is fully

hardware dependent

language.

 Embedded C are OS

independent.

COMPILER

 For C language, the

standard compilers can be

used to compile and

execute the program.

 Popular Compiler to

execute a C language

program are:

 GCC (GNU Compiler

collection)

 Borland turbo C,

 Intel C++

 For Embedded C, a specific

compilers that are able to

generate particular

hardware/micro-controller

based output is used.

 Popular Compiler to execute

a Embedded C language

program are:

 Keil compiler

 BiPOM ELECTRONIC

 Green Hill software

USABILITY

AND

APPLICATION

 C language has a free-

format of program

coding.

 It is specifically used for

desktop application.

 Optimization is normal.

 Formatting depends upon

the type of microprocessor

that is used.

 It is used for limited

resources like RAM and

ROM.

8

 It is very easy to read and

modify the C language.

 Bug fixing are very easy in

a C language program.

 It supports other various

programming languages

during application.

 Input can be given to the

program while it is

running.

 Applications of C

Program:

 Logical programs

 System software

programs

 High level of optimization.

 It is not easy to read and

modify the Embedded C

language.

 Bug fixing is complicated in a

Embedded C language

program.

 It supports only required

processor of the application,

and not the programming

languages.

 Only the pre-defined input

can be given to the running

program.

 Applications of Embedded C

Program:

 DVD

 TV

 Digital camera

C Introduction

What is C?

C is a general-purpose programming language created by Dennis Ritchie at the Bell

Laboratories in 1972.

It is a very popular language, despite being old.

C is strongly associated with UNIX, as it was developed to write the UNIX operating
system.

Why Learn C?

 It is one of the most popular programming language in the world

 If you know C, you will have no problem learning other popular programming
languages such as Java, Python, C++, C#, etc, as the syntax is similar

 C is very fast, compared to other programming languages,
like Java and Python

 C is very versatile; it can be used in both applications and technologies

Difference between C and C++

9

 C++ was developed as an extension of C, and both languages have almost
the same syntax

 The main difference between C and C++ is that C++ support classes and
objects, while C does not

Get Started

It is not necessary to have any prior programming experience.

To start using C, you need two things:

 A text editor, like Notepad, to write C code

 A compiler, like GCC, to translate the C code into a language that the
computer will understand

There are many text editors and compilers to choose from. In this tutorial, we will
use an IDE (see below).

C Install IDE

An IDE (Integrated Development Environment) is used to edit AND compile the

code.

Popular IDE's include Code::Blocks, Eclipse, and Visual Studio. These are all free,
and they can be used to both edit and debug C code.

We will use Code::Blocks in our tutorial, which we believe is a good place to start.

You can find the latest version of Codeblocks at http://www.codeblocks.org/.

Download the mingw-setup.exe file, which will install the text editor with a

compiler.

C Syntax
Example

#include <stdio.h>

int main() {

 printf("Hello World!");

 return 0;

}

Example explained

Line 1: #include <stdio.h> is a header file library that lets us work with input and

output functions, such as printf() (used in line 4). Header files add functionality to

C programs.

10

Don't worry if you don't understand how #include <stdio.h> works. Just think of it

as something that (almost) always appears in your program.

Line 2: A blank line. C ignores white space. But we use it to make the code more
readable.

Line 3: Another thing that always appear in a C program, is main(). This is called

a function. Any code inside its curly brackets {} will be executed.

Line 4: printf() is a function used to output/print text to the screen. In our

example it will output "Hello World".

Note that: Every C statement ends with a semicolon ;

Note: The body of int main() could also been written as:
int main(){printf("Hello World!");return 0;}

Remember: The compiler ignores white spaces. However, multiple lines makes the
code more readable.

Line 5: return 0 ends the main() function.

Line 6: Do not forget to add the closing curly bracket } to actually end the main

function.

Comments in C

Comments can be used to explain code, and to make it more readable. It can also

be used to prevent execution when testing alternative code.

Comments can be singled-lined or multi-lined.

Single-line Comments

Single-line comments start with two forward slashes (//).

Any text between // and the end of the line is ignored by the compiler (will not be

executed).

This example uses a single-line comment before a line of code:

Example

// This is a comment

printf("Hello World!");

This example uses a single-line comment at the end of a line of code:

Example

printf("Hello World!"); // This is a comment

11

C Multi-line Comments

Multi-line comments start with /* and ends with */.

Any text between /* and */ will be ignored by the compiler:

Example

/* The code below will print the words Hello World!

to the screen, and it is amazing */

printf("Hello World!");

C reserved keywords

The table below lists all keywords reserved by the C language. When the current programming

language is C or C++, these keywords cannot be abbreviated, used as variable names, or used as any

other type of identifiers.

auto else long switch

break enum register typedef

case extern return union

char float short unsigned

const for signed void

continue goto sizeof volatile

default if static while

do int struct _Packed

double

C Variables
Variables are containers for storing data values.

In C, there are different types of variables (defined with different keywords), for

example:

 int - stores integers (whole numbers), without decimals, such as 123 or -

123

 float - stores floating point numbers, with decimals, such as 19.99 or -

19.99

 char - stores single characters, such as 'a' or 'B'. Char values are surrounded

by single quotes

Declaring (Creating) Variables

12

To create a variable, specify the type and assign it a value:

Syntax

type variableName = value;

Where type is one of C types (such as int), and variableName is the name of the

variable (such as x or myName). The equal sign is used to assign a value to the
variable.

So, to create a variable that should store a number, look at the following
example:

Example

Create a variable called myNum of type int and assign the value 15 to it:

int myNum = 15;

You can also declare a variable without assigning the value, and assign the value

later:

Example

int myNum;
myNum = 15;

Note: If you assign a new value to an existing variable, it will overwrite the

previous value:

Example

int myNum = 15; // myNum is 15
myNum = 10; // Now myNum is 10

Output Variables

You learned from the output chapter that you can output values/print text with

the printf() function:

Example

printf("Hello World!");

In many other programming languages (like Python, Java, and C++), you would
normally use a print function to display the value of a variable. However, this is

not possible in C:

13

Example

int myNum = 15;

printf(myNum); // Nothing happens

To output variables in C, you must get familiar with something called "format
specifiers".

Format Specifiers

Format specifiers are used together with the printf() function to tell the compiler

what type of data the variable is storing. It is basically a placeholder for the

variable value.

A format specifier starts with a percentage sign %, followed by a character.

For example, to output the value of an int variable, you must use the format

specifier %d or %i surrounded by double quotes, inside the printf() function:

Example

int myNum = 15;

printf("%d", myNum); // Outputs 15

To print other types, use %c for char and %f for float:

Example

// Create variables

int myNum = 5; // Integer (whole number)

float myFloatNum = 5.99; // Floating point number

char myLetter = 'D'; // Character

// Print variables

printf("%d\n", myNum);

printf("%f\n", myFloatNum);
printf("%c\n", myLetter);

To combine both text and a variable, separate them with a comma inside

the printf() function:

Example

int myNum = 5;

printf("My favorite number is: %d", myNum);

To print different types in a single printf() function, you can use the following:

14

Example

int myNum = 5;

char myLetter = 'D';

printf("My number is %d and my letter is %c", myNum, myLetter);

You will learn more about Data Types in the next chapter.

Add Variables Together

To add a variable to another variable, you can use the + operator:

Example

int x = 5;

int y = 6;

int sum = x + y;
printf("%d", sum);

Declare Multiple Variables

To declare more than one variable of the same type, use a comma-separated list:

Example

int x = 5, y = 6, z = 50;

printf("%d", x + y + z);

You can also assign the same value to multiple variables of the same type:

Example

int x, y, z;

x = y = z = 50;

printf("%d", x + y + z);

C Variable Names

All C variables must be identified with unique names.

These unique names are called identifiers.

Identifiers can be short names (like x and y) or more descriptive names (age, sum,
totalVolume).

Note: It is recommended to use descriptive names in order to create
understandable and maintainable code:

15

Example

// Good

int minutesPerHour = 60;

// OK, but not so easy to understand what m actually is

int m = 60;

The general rules for naming variables are:

 Names can contain letters, digits and underscores
 Names must begin with a letter or an underscore (_)

 Names are case sensitive (myVar and myvar are different variables)

 Names cannot contain whitespaces or special characters like !, #, %, etc.

 Reserved words (such as int) cannot be used as names

Data Types

As explained in the Variables chapter, a variable in C must be a specified data

type, and you must use a format specifier inside the printf() function to display

it:

Example

// Create variables

int myNum = 5; // Integer (whole number)

float myFloatNum = 5.99; // Floating point number

char myLetter = 'D'; // Character

// Print variables

printf("%d\n", myNum);

printf("%f\n", myFloatNum);

printf("%c\n", myLetter);

Basic Data Types

The data type specifies the size and type of information the variable will store.

In this tutorial, we will focus on the most basic ones:

Data Type Size Description

int 2 or 4 bytes Stores whole numbers, without decimals

float 4 bytes Stores fractional numbers, containing one or more decimals. Sufficient

for storing 7 decimal digits

double 8 bytes Stores fractional numbers, containing one or more decimals. Sufficient

for storing 15 decimal digits

16

char 1 byte Stores a single character/letter/number, or ASCII values

Basic Format Specifiers

There are different format specifiers for each data type. Here are some of them:

Format Specifier Data Type

%d or %i int

%f float

%lf double

%c char

%s Used for strings, which you will learn more about in a later chapter

Constants

When you don't want others (or yourself) to override existing variable values, use

the const keyword (this will declare the variable as "constant", which

means unchangeable and read-only):

Example

const int myNum = 15; // myNum will always be 15

myNum = 10; // error: assignment of read-only variable 'myNum'

You should always declare the variable as constant when you have values that are

unlikely to change:

Example

const int minutesPerHour = 60;

const float PI = 3.14;

Notes on Constants

When you declare a constant variable, it must be assigned with a value:

Example

Like this:

const int minutesPerHour = 60;

This however, will not work:

17

const int minutesPerHour;

minutesPerHour = 60; // error

Good Practice

Another thing about constant variables, is that it is considered good practice to

declare them with uppercase. It is not required, but useful for code readability and

common for C programmers:

Example

const int BIRTHYEAR = 1980;

User Input

You have already learned that printf() is used to output values in C.

To get user input, you can use the scanf() function:

Example

Output a number entered by the user:

// Create an integer variable that will store the number we get from the user

int myNum;

// Ask the user to type a number

printf("Type a number: \n");

// Get and save the number the user types

scanf("%d", &myNum);

// Output the number the user typed

printf("Your number is: %d", myNum);

The scanf() function takes two arguments: the format specifier of the variable (%d in

the example above) and the reference operator (&myNum), which stores the memory

address of the variable.

Tip: You will learn more about memory addresses and functions in the next

chapter.

User Input Strings

You can also get a string entered by the user:

Example

Output the name of a user:

18

// Create a string

char firstName[30];

// Ask the user to input some text

printf("Enter your first name: \n");

// Get and save the text

scanf("%s", firstName);

// Output the text

printf("Hello %s.", firstName);

Note that you must specify the size of the string/array (we used a very high

number, 30, but atleast then we are certain it will store enough characters for the
first name), and you don't have to specify the reference operator (&) when working

with strings in scanf().

Operators

Operators are used to perform operations on variables and values.

In the example below, we use the + operator to add together two values:

Example

int myNum = 100 + 50;

Although the + operator is often used to add together two values, like in the

example above, it can also be used to add together a variable and a value, or a

variable and another variable:

Example

int sum1 = 100 + 50; // 150 (100 + 50)

int sum2 = sum1 + 250; // 400 (150 + 250)

int sum3 = sum2 + sum2; // 800 (400 + 400)

C divides the operators into the following groups:

 Arithmetic operators
 Assignment operators

 Comparison operators
 Logical operators

 Bitwise operators

Arithmetic Operators

Arithmetic operators are used to perform common mathematical operations.

19

Operator Name Description Example

+ Addition Adds together two values x + y

- Subtraction Subtracts one value from another x - y

* Multiplication Multiplies two values x * y

/ Division Divides one value by another x / y

% Modulus Returns the division remainder x % y

++ Increment Increases the value of a variable by 1 ++x

-- Decrement Decreases the value of a variable by 1 --x

Assignment Operators

Assignment operators are used to assign values to variables.

In the example below, we use the assignment operator (=) to assign the

value 10 to a variable called x:

Example

int x = 10;

The addition assignment operator (+=) adds a value to a variable:

Example

int x = 10;
x += 5;

A list of all assignment operators:

Operator Example Same As

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

&= x &= 3 x = x & 3

20

|= x |= 3 x = x | 3

^= x ^= 3 x = x ^ 3

>>= x >>= 3 x = x >> 3

<<= x <<= 3 x = x << 3

Comparison Operators

Comparison operators are used to compare two values.

Note: The return value of a comparison is either true (1) or false (0).

In the following example, we use the greater than operator (>) to find out if 5 is

greater than 3:

Example

int x = 5;

int y = 3;

printf("%d", x > y); // returns 1 (true) because 5 is greater than 3

A list of all comparison operators:

Operator Name Example

== Equal to x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

Logical Operators

Logical operators are used to determine the logic between variables or values:

Operator Name Description Example

&& Logical and Returns true if both statements are true x < 5 && x < 10

|| Logical or Returns true if one of the statements is

true

x < 5 || x < 4

21

! Logical not Reverse the result, returns false if the

result is true

!(x < 5 && x < 10)

Sizeof Operator

The memory size (in bytes) of a data type or a variable can be found with

the sizeof operator:

Example

int myInt;

float myFloat;

double myDouble;

char myChar;

printf("%lu\n", sizeof(myInt));

printf("%lu\n", sizeof(myFloat));

printf("%lu\n", sizeof(myDouble));
printf("%lu\n", sizeof(myChar));

Conditions and If Statements

You learned from the operators comparison chapter, that C supports the usual

logical conditions from mathematics:

 Less than: a < b

 Less than or equal to: a <= b

 Greater than: a > b

 Greater than or equal to: a >= b

 Equal to a == b

 Not Equal to: a != b

You can use these conditions to perform different actions for different decisions.

C has the following conditional statements:

 Use if to specify a block of code to be executed, if a specified condition is

true
 Use else to specify a block of code to be executed, if the same condition is

false
 Use else if to specify a new condition to test, if the first condition is false
 Use switch to specify many alternative blocks of code to be executed

The if Statement

Use the if statement to specify a block of C code to be executed if a condition

is true.

22

Syntax

if (condition) {

 // block of code to be executed if the condition is true

}

Note that if is in lowercase letters. Uppercase letters (If or IF) will generate an

error.

In the example below, we test two values to find out if 20 is greater than 18. If the
condition is true, print some text:

Example

if (20 > 18) {

 printf("20 is greater than 18");
}

We can also test variables:

Example

int x = 20;

int y = 18;

if (x > y) {

 printf("x is greater than y");
}

Example explained

In the example above we use two variables, x and y, to test whether x is greater

than y (using the > operator). As x is 20, and y is 18, and we know that 20 is

greater than 18, we print to the screen that "x is greater than y".

The else Statement

Use the else statement to specify a block of code to be executed if the condition

is false.

Syntax

if (condition) {

 // block of code to be executed if the condition is true

} else {

 // block of code to be executed if the condition is false

}

23

Example

int time = 20;

if (time < 18) {

 printf("Good day.");

} else {

 printf("Good evening.");

}

// Outputs "Good evening."

Example explained

In the example above, time (20) is greater than 18, so the condition is false.

Because of this, we move on to the else condition and print to the screen "Good

evening". If the time was less than 18, the program would print "Good day".

The else if Statement

Use the else if statement to specify a new condition if the first condition is false.

Syntax

if (condition1) {

 // block of code to be executed if condition1 is true

} else if (condition2) {

 // block of code to be executed if the condition1 is false and condition2

is true

} else {

 // block of code to be executed if the condition1 is false and condition2

is false

}

Example

int time = 22;

if (time < 10) {

 printf("Good morning.");

} else if (time < 20) {

 printf("Good day.");

} else {

 printf("Good evening.");

}
// Outputs "Good evening."

Example explained

In the example above, time (22) is greater than 10, so the first condition is false.

The next condition, in the else if statement, is also false, so we move on to

the else condition since condition1 and condition2 is both false - and print to the

screen "Good evening".

24

However, if the time was 14, our program would print "Good day."

Another Example

This example shows how you can use if..else if to find out if a number is positive or

negative:

Example

int myNum = 10; // Is this a positive or negative number?

if (myNum > 0)

 printf("The value is a positive number.");

else if (myNum < 0)

 printf("The value is a negative number.");

else
 printf("The value is 0.");

Short Hand If...Else (Ternary Operator)

There is also a short-hand if else, which is known as the ternary

operator because it consists of three operands. It can be used to replace multiple

lines of code with a single line. It is often used to replace simple if else statements:

Syntax

variable = (condition) ? expressionTrue : expressionFalse;

Instead of writing:

Example

int time = 20;

if (time < 18) {

 printf("Good day.");

} else {

 printf("Good evening.");

}

You can simply write:

Example

int time = 20;

(time < 18) ? printf("Good day.") : printf("Good evening.");

Switch Statement

25

Instead of writing many if..else statements, you can use the switch statement.

The switch statement selects one of many code blocks to be executed:

Syntax

switch(expression) {

 case x:

 // code block

 break;

 case y:

 // code block

 break;

 default:

 // code block

}

This is how it works:

 The switch expression is evaluated once

 The value of the expression is compared with the values of each case
 If there is a match, the associated block of code is executed
 The break statement breaks out of the switch block and stops the execution

 The default statement is optional, and specifies some code to run if there is

no case match

The example below uses the weekday number to calculate the weekday name:

Example

int day = 4;

switch (day) {

 case 1:

 printf("Monday");

 break;

 case 2:

 printf("Tuesday");

 break;

 case 3:

 printf("Wednesday");

 break;

 case 4:

 printf("Thursday");

 break;

 case 5:

 printf("Friday");

 break;

 case 6:

 printf("Saturday");

 break;

 case 7:

26

 printf("Sunday");

 break;

}

// Outputs "Thursday" (day 4)

The break Keyword

When C reaches a break keyword, it breaks out of the switch block.

This will stop the execution of more code and case testing inside the block.

When a match is found, and the job is done, it's time for a break. There is no need
for more testing.

A break can save a lot of execution time because it "ignores" the execution of all
the rest of the code in the switch block.

The default Keyword

The default keyword specifies some code to run if there is no case match:

Example

int day = 4;

switch (day) {

 case 6:

 printf("Today is Saturday");

 break;

 case 7:

 printf("Today is Sunday");

 break;

 default:

 printf("Looking forward to the Weekend");

}

// Outputs "Looking forward to the Weekend"

Note: The default keyword must be used as the last statement in the switch, and it

does not need a break.

Loops

Loops can execute a block of code as long as a specified condition is reached.

Loops are handy because they save time, reduce errors, and they make code more
readable.

27

While Loop

The while loop loops through a block of code as long as a specified condition is true:

Syntax

while (condition) {

 // code block to be executed

}

In the example below, the code in the loop will run, over and over again, as long as

a variable (i) is less than 5:

Example

int i = 0;

while (i < 5) {

 printf("%d\n", i);

 i++;

}

Note: Do not forget to increase the variable used in the condition (i++), otherwise

the loop will never end!

The Do/While Loop

The do/while loop is a variant of the while loop. This loop will execute the code block

once, before checking if the condition is true, then it will repeat the loop as long as
the condition is true.

Syntax

do {

 // code block to be executed

}

while (condition);

The example below uses a do/while loop. The loop will always be executed at least

once, even if the condition is false, because the code block is executed before the

condition is tested:

Example

int i = 0;

do {

28

 printf("%d\n", i);

 i++;

}

while (i < 5);

Do not forget to increase the variable used in the condition, otherwise the loop will

never end!

For Loop

When you know exactly how many times you want to loop through a block of code,

use the for loop instead of a while loop:

Syntax

for (statement 1; statement 2; statement 3) {

 // code block to be executed

}

Statement 1 is executed (one time) before the execution of the code block.

Statement 2 defines the condition for executing the code block.

Statement 3 is executed (every time) after the code block has been executed.

The example below will print the numbers 0 to 4:

Example

int i;

for (i = 0; i < 5; i++) {

 printf("%d\n", i);

}

Example explained

Statement 1 sets a variable before the loop starts (int i = 0).

Statement 2 defines the condition for the loop to run (i must be less than 5). If the

condition is true, the loop will start over again, if it is false, the loop will end.

Statement 3 increases a value (i++) each time the code block in the loop has been

executed.

Another Example

This example will only print even values between 0 and 10:

29

Example

for (i = 0; i <= 10; i = i + 2) {

 printf("%d\n", i);

}

Break

You have already seen the break statement used in an earlier chapter of this

tutorial. It was used to "jump out" of a switch statement.

The break statement can also be used to jump out of a loop.

This example jumps out of the loop when i is equal to 4:

Example

int i;

for (i = 0; i < 10; i++) {

 if (i == 4) {

 break;

 }

 printf("%d\n", i);

}

Continue

The continue statement breaks one iteration (in the loop), if a specified condition

occurs, and continues with the next iteration in the loop.

This example skips the value of 4:

Example

int i;

for (i = 0; i < 10; i++) {

 if (i == 4) {

 continue;

 }

 printf("%d\n", i);

}

Break and Continue in While Loop

You can also use break and continue in while loops:

30

Break Example

int i = 0;

while (i < 10) {

 if (i == 4) {

 break;

 }

 printf("%d\n", i);

 i++;

}

Continue Example

int i = 0;

while (i < 10) {

 if (i == 4) {

 i++;

 continue;

 }

 printf("%d\n", i);

 i++;
}

Strings

Strings are used for storing text/characters.

For example, "Hello World" is a string of characters.

Unlike many other programming languages, C does not have a String type to
easily create string variables. However, you can use the char type and create

an array of characters to make a string in C:

char greetings[] = "Hello World!";

Note that you have to use double quotes.

To output the string, you can use the printf() function together with the format

specifier %s to tell C that we are now working with strings:

Example

char greetings[] = "Hello World!";

printf("%s", greetings);

Access Strings

31

Since strings are actually arrays in C, you can access a string by referring to its
index number inside square brackets [].

This example prints the first character (0) in greetings:

Example

char greetings[] = "Hello World!";

printf("%c", greetings[0]);

Note that we have to use the %c format specifier to print a single character.

Modify Strings

To change the value of a specific character in a string, refer to the index number,

and use single quotes:

Example

char greetings[] = "Hello World!";

greetings[0] = 'J';

printf("%s", greetings);

// Outputs Jello World! instead of Hello World!

Another Way of Creating Strings

In the examples above, we used a "string literal" to create a string variable. This is

the easiest way to create a string in C.

You should also note that you can to create a string with a set of characters. This

example will produce the same result as the one above:

Example

char greetings[] = {'H', 'e', 'l', 'l', 'o', '

', 'W', 'o', 'r', 'l', 'd', '!', '\0'};

printf("%s", greetings);

Why do we include the \0 character at the end? This is known as the "null

terminating character", and must be included when creating strings using this
method. It tells C that this is the end of the string.

Differences

The difference between the two ways of creating strings, is that the first method is

easier to write, and you do not have to include the \0 character, as C will do it for

you.

32

You should note that the size of both arrays is the same: They both have 13
characters (space also counts as a character by the way), including

the \0 character:

Example

char greetings[] = {'H', 'e', 'l', 'l', 'o', '

', 'W', 'o', 'r', 'l', 'd', '!', '\0'};

char greetings2[] = "Hello World!";

printf("%lu\n", sizeof(greetings)); // Outputs 13

printf("%lu\n", sizeof(greetings2)); // Outputs 13

Memory Address

When a variable is created in C, a memory address is assigned to the variable.

The memory address is the location of where the variable is stored on the
computer.

When we assign a value to the variable, it is stored in this memory address.

To access it, use the reference operator (&), and the result will represent where the

variable is stored:

Example

int myAge = 43;

printf("%p", &myAge); // Outputs 0x7ffe5367e044

Note: The memory address is in hexadecimal form (0x..). You probably won't get

the same result in your program.

You should also note that &myAge is often called a "pointer". A pointer basically

stores the memory address of a variable as its value. To print pointer values, we
use the %p format specifier.

Creating Pointers

You learned from the previous chapter, that we can get the memory address of a

variable with the reference operator &:

Example

int myAge = 43; // an int variable

printf("%d", myAge); // Outputs the value of myAge (43)

printf("%p", &myAge); // Outputs the memory address of myAge (0x7ffe5367e044)

In the example above, &myAge is also known as a pointer.

33

A pointer is a variable that stores the memory address of another variable as its
value.

A pointer variable points to a data type (like int) of the same type, and is

created with the * operator. The address of the variable you're working with is

assigned to the pointer:

Example

int myAge = 43; // An int variable

int* ptr = &myAge; // A pointer variable, with the name ptr, that stores the

address of myAge

// Output the value of myAge (43)

printf("%d\n", myAge);

// Output the memory address of myAge (0x7ffe5367e044)

printf("%p\n", &myAge);

// Output the memory address of myAge with the pointer (0x7ffe5367e044)

printf("%p\n", ptr);

Example explained

Create a pointer variable with the name ptr, that points to an int variable (myAge).

Note that the type of the pointer has to match the type of the variable you're

working with.

Use the & operator to store the memory address of the myAge variable, and assign it

to the pointer.

Now, ptr holds the value of myAge's memory address.

Dereference

In the example above, we used the pointer variable to get the memory address of

a variable (used together with the & reference operator).

However, you can also get the value of the variable the pointer points to, by using
the * operator (the dereference operator):

Example

int myAge = 43; // Variable declaration

int* ptr = &myAge; // Pointer declaration

// Reference: Output the memory address of myAge with the pointer

(0x7ffe5367e044)

printf("%p\n", ptr);

// Dereference: Output the value of myAge with the pointer (43)

34

printf("%d\n", *ptr);

Note that the * sign can be confusing here, as it does two different things in our

code:

 When used in declaration (int* ptr), it creates a pointer variable.

 When not used in declaration, it act as a dereference operator.

Why Should I Learn About Pointers? Pointers are important in C, because they

give you the ability to manipulate the data in the computer's memory - this can
reduce the code and improve the performance.

Pointers are one of the things that make C stand out from other programming
languages, like Python and Java.

Note: Pointers must be handled with care, since it is possible to damage data
stored in other memory addresses.

Good To Know: There are three ways to declare pointer variables, but the first

way is mostly used:

int* myNum; // Most used

int *myNum;

int * myNum;

Arrays

Arrays are used to store multiple values in a single variable, instead of declaring

separate variables for each value.

To create an array, define the data type (like int) and specify the name of the

array followed by square brackets [].

To insert values to it, use a comma-separated list, inside curly braces:

int myNumbers[] = {25, 50, 75, 100};

We have now created a variable that holds an array of four integers.

Access the Elements of an Array

To access an array element, refer to its index number.

Array indexes start with 0: [0] is the first element. [1] is the second element, etc.

This statement accesses the value of the first element [0] in myNumbers:

35

Example

int myNumbers[] = {25, 50, 75, 100};

printf("%d", myNumbers[0]);

// Outputs 25

Change an Array Element

To change the value of a specific element, refer to the index number:

Example

myNumbers[0] = 33;

Example

int myNumbers[] = {25, 50, 75, 100};

myNumbers[0] = 33;

printf("%d", myNumbers[0]);

// Now outputs 33 instead of 25

Loop through an Array

You can loop through the array elements with the for loop.

The following example outputs all elements in the myNumbers array:

Example

int myNumbers[] = {25, 50, 75, 100};

int i;

for (i = 0; i < 4; i++) {

 printf("%d\n", myNumbers[i]);

}

Set Array Size

Another common way to create arrays, is to specify the size of the array, and add

elements later:

36

Example

// Declare an array of four integers:

int myNumbers[4];

// Add elements

myNumbers[0] = 25;

myNumbers[1] = 50;

myNumbers[2] = 75;

myNumbers[3] = 100;

Using this method, you should know the size of the array, in order for the

program to store enough memory.

You are not able to change the size of the array after creation.

C Functions
A function is a block of code which only runs when it is called.

You can pass data, known as parameters, into a function.

Functions are used to perform certain actions, and they are important for

reusing code: Define the code once, and use it many times.

Predefined Functions

So it turns out you already know what a function is. You have been using it the

whole time while studying this tutorial!

For example, main() is a function, which is used to execute code, and printf() is a

function; used to output/print text to the screen:

Example

int main() {

 printf("Hello World!");

 return 0;
}

Create a Function

To create (often referred to as declare) your own function, specify the name of the

function, followed by parentheses () and curly brackets {}:

37

Syntax

void myFunction() {

 // code to be executed

}

Example Explained

 myFunction() is the name of the function

 void means that the function does not have a return value. You will learn

more about return values later in the next chapter
 Inside the function (the body), add code that defines what the function

should do

Call a Function

Declared functions are not executed immediately. They are "saved for later use",

and will be executed when they are called.

To call a function, write the function's name followed by two parentheses () and a

semicolon ;

In the following example, myFunction() is used to print a text (the action), when it is

called:

Example

Inside main, call myFunction():

// Create a function

void myFunction() {

 printf("I just got executed!");

}

int main() {

 myFunction(); // call the function

 return 0;

}

// Outputs "I just got executed!"

A function can be called multiple times:

Example

void myFunction() {

 printf("I just got executed!");

}

38

int main() {

 myFunction();

 myFunction();

 myFunction();

 return 0;

}

// I just got executed!

// I just got executed!

// I just got executed!

Parameters and Arguments

Information can be passed to functions as a parameter. Parameters act as variables

inside the function.

Parameters are specified after the function name, inside the parentheses. You can
add as many parameters as you want, just separate them with a comma:

Syntax

returnType functionName(parameter1, parameter2, parameter3) {

 // code to be executed

}

The following function that takes a string of characters with name as parameter.

When the function is called, we pass along a name, which is used inside the

function to print "Hello" and the name of each person.

Example

void myFunction(char name[]) {

 printf("Hello %s\n", name);

}

int main() {

 myFunction("Liam");

 myFunction("Jenny");

 myFunction("Anja");

 return 0;

}

// Hello Liam

// Hello Jenny

// Hello Anja

When a parameter is passed to the function, it is called an argument. So, from

the example above: name is a parameter,

while Liam, Jenny and Anja are arguments.

39

Multiple Parameters

Inside the function, you can add as many parameters as you want:

Example

void myFunction(char name[], int age) {

 printf("Hello %s. You are %d years old.\n", name, age);

}

int main() {

 myFunction("Liam", 3);

 myFunction("Jenny", 14);

 myFunction("Anja", 30);

 return 0;

}

// Hello Liam. You are 3 years old.

// Hello Jenny. You are 14 years old.

// Hello Anja. You are 30 years old.

Note that when you are working with multiple parameters, the function call must

have the same number of arguments as there are parameters, and the arguments

must be passed in the same order.

Return Values

The void keyword, used in the previous examples, indicates that the function should

not return a value. If you want the function to return a value, you can use a data

type (such as int or float, etc.) instead of void, and use the return keyword inside

the function:

Example

int myFunction(int x) {

 return 5 + x;

}

int main() {

 printf("Result is: %d", myFunction(3));

 return 0;

}

// Outputs 8 (5 + 3)

This example returns the sum of a function with two parameters:

40

Example

int myFunction(int x, int y) {

 return x + y;

}

int main() {

 printf("Result is: %d", myFunction(5, 3));

 return 0;

}

// Outputs 8 (5 + 3)

You can also store the result in a variable:

Example

int myFunction(int x, int y) {

 return x + y;

}

int main() {

 int result = myFunction(5, 3);

 printf("Result is = %d", result);

 return 0;

}

// Outputs 8 (5 + 3)

Function Declaration and Definition

You just learned from the previous chapters that you can create and call a function

it the following way:

Example

// Create a function

void myFunction() {

 printf("I just got executed!");

}

int main() {

 myFunction(); // call the function

 return 0;
}

A function consist of two parts:

 Declaration: the function's name, return type, and parameters (if any)

41

 Definition: the body of the function (code to be executed)

void myFunction() { // declaration

 // the body of the function (definition)

}

For code optimization, it is recommended to separate the declaration and the
definition of the function.

You will often see C programs that have function declaration above main(), and

function definition below main(). This will make the code better organized and easier

to read:

Example

// Function declaration

void myFunction();

// The main method

int main() {

 myFunction(); // call the function

 return 0;

}

// Function definition

void myFunction() {

 printf("I just got executed!");

}

Another Example

If we use the example from the previous chapter regarding function parameters

and return values:

Example

int myFunction(int x, int y) {

 return x + y;

}

int main() {

 int result = myFunction(5, 3);

 printf("Result is = %d", result);

 return 0;

}

// Outputs 8 (5 + 3)

It is considered good practice to write it like this instead:

42

Example

// Function declaration

int myFunction(int, int);

// The main method

int main() {

 int result = myFunction(5, 3); // call the function

 printf("Result is = %d", result);

 return 0;

}

// Function definition

int myFunction(int x, int y) {

 return x + y;

}

Function prototype

A function prototype is simply the declaration of a function that specifies

function's name, parameters and return type. It doesn't contain function body.

A function prototype gives information to the compiler that the function may later

be used in the program.

#include <stdio.h>

int addNumbers(int a, int b); // function prototype

int main()

{

 int n1,n2,sum;

 printf("Enters two numbers: ");

 scanf("%d %d",&n1,&n2);

 sum = addNumbers(n1, n2); // function call

 printf("sum = %d",sum);

 return 0;

}

int addNumbers(int a, int b) // function definition

{

 int result;

 result = a+b;

 return result; // return statement

}

43

Recursion

Recursion is the technique of making a function call itself. This technique provides a

way to break complicated problems down into simple problems which are easier to

solve.

Recursion may be a bit difficult to understand. The best way to figure out how it

works is to experiment with it.

Recursion Example

Adding two numbers together is easy to do, but adding a range of numbers is more

complicated. In the following example, recursion is used to add a range of numbers
together by breaking it down into the simple task of adding two numbers:

Example

int sum(int k);

int main() {

 int result = sum(10);

 printf("%d", result);

 return 0;

}

int sum(int k) {

 if (k > 0) {

 return k + sum(k - 1);

 } else {

 return 0;

 }

}

Example Explained

When the sum() function is called, it adds parameter k to the sum of all numbers

smaller than k and returns the result. When k becomes 0, the function just returns

0. When running, the program follows these steps:

10 + sum(9)

10 + (9 + sum(8))

10 + (9 + (8 + sum(7)))

...

10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + sum(0)

10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0

Since the function does not call itself when k is 0, the program stops there and

returns the result.

44

The developer should be very careful with recursion as it can be quite easy to slip
into writing a function which never terminates, or one that uses excess amounts of

memory or processor power. However, when written correctly recursion can be a
very efficient and mathematically-elegant approach to programming.

Chapter 4 exercise

1. Arduino sketch esa lHkh code processed gksrs gSa ___\

a. Top to Bottom

b. Bottom to Top

c. Any Order

d. None of these.

2. Arduino esa fy[ks x, yxHkx lHkh statement ___ ds lkFk lekIr gksuk pkfg,\

a. Comma (,)

b. Colon (:)

c. Semicolon (;)

d. Full stop (.)

3. Advantage of Arduino?

a. Easy to Learn

b. Huge Community ¼fo’kky leqnk;½

c. Many Third-Party Libraries ¼dbZ r`rh;&i{k ykbczsjh½

d. All of the above.

4. The full form of GPIO is ___?

a. Ground Pin Input / Output

b. Common Pin Input / Output

c. General Purpose Input / Output

d. None of these.

5. setup() ifjHkkf”kr djrk gS ___\

a. PIN functionality using the pinMode function

b. Initial state of pins ¼fiUl dh izkjafHkd voLFkk½

c. Initial Classes and Variables ¼izkjafHkd Dyklsl vkSj osfj,cy½

d. All of the above.

6. Compiler Error is ___\

a. No Semicolon or Parentheses

b. No Variable Initialization

c. Misspellings and Wrong Capitalization

d. All of the above.

7. fuEufyf[kr esa ls dkSu lk dFku serial communication ds ckjs esa lgh gS\

a. Serial Communication ,d device ls nwljs device dks sequentially data Hkstus dh process gSA

b. Serial Communication esa] data bits dks ,d device ls nwljs device esa sequentially Hkstk tkrk gSA

c. Communication ds rst lk/ku provide djrk gSA

d. All of the above.

8. HC-05 Module esa lapkfyr fd;k tk ldrk gS ___\

45

a. Slave Mode

b. Master Mode

c. Both (a) and (b)

d. None of these.

9. Arduino program esa default method gS ___\

a. Only loop()

b. Only setup()

c. setup() and loop()

d. setup() or loop()

10. Module dh x.kuk djus ds fy, Arduino esa fdl sign dk mi;ksx fd;k tkrk gS\

a. #

b. $

c. %

d. !

11. Arduino UNO is ___\

a. Hardware Device

b. Software

c. Network

d. Protocol

12. Arduino UNO esa mi;ksx fd;k tkus okyk microcontroller D;k gS\

a. ATmega32114

b. ATmega2560

c. ATmega328p

d. None of these.

13. ATmega328p esa p D;k n’kkZrk gS\

a. Power-Pico

b. Pico-Power

c. Production

d. Programmable on chip

14. Arduino IDE esa 2 functions gksrs gSaA os D;k gSa\

a. setup() and loop()

b. setup() and build()

c. build() and loop()

d. None of these.

15. Arduino UNO dk default bootloader D;k gS\

a. UF2 Bootloader

b. Optiboot Bootloader

c. Barebox Bootloader

d. None of these.

16. The full form of PWM is ___?

a. Pulse-width modulation

b. Pulse-width module

c. Pulse-width mode

